Optimally integrating renewables

P. R. Kumar Based on joint work with Gaurav Sharma and Le Xie

Dept. of Electrical and Computer Engineering Texas A&M University

prk.tamu@gmail.com http://cesg.tamu.edu/faculty/p-r-kumar/ Grid Science Winter Conference LANL Santa Fe January 16, 2015

Uncertainty of renewable power

Wind power is stochastic, not dispatchable

How to integrate wind?

Demand response

- Adjust demand to match supply
- Some loads can be switched off for a while without being noticed
 - E.g., Air conditioners under thermostatic control

 Inertial thermal loads can absorb fluctuations in available wind power

Flexibility of load requirements

- Amount of demand response will depend on how flexible the loads are with respect to their requirements
- More demand response possible

Lesser scope for demand response

Renewable power is not enough to fully satisfy load requirements

- Renewables can help reduce need for non-renewables
- However, they cannot eliminate need for nonrenewables
- Non-renewables still required
 - When wind stops blowing

 After sudden comfort-setting change

Reduce peak-to-average non-renewable power generation

- Non-renewables still required
- Need to reduce peak-to-average of non-renewable power

 Reduce expensive spinning/other reserves, capital, etc

Concavity and desynchronization

A stochastic control problem

Collection of loads

Stochastic control model

Wind process

$$\sum P_i^w(t) \sim \text{Markov process}$$

Temperature dynamics

$$\dot{x}_i(t) = h_i - P_i^w(t) - P_i^n(t)$$

Non-renewable power

$$P_i^n(t) \ge 0$$

Temperature constraint

$$x_i(t) \in [\Theta_{\min}, \Theta_{\max}], \forall i$$

 Quadratic cost to reduce variability

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \left[\sum_i P_i^n(t) \right]^2 dt$$

Optimal solution: Synchronization

Theorem: The optimal policy synchronizes loads

 Is there some modification in the model or cost function which leads to de-synchronization?

Stochastic model for Θ_{\max}

- Suppose users occasionally change Θ_{max} settings at the same time
 - E.g. Super Bowl Sundays @ game time

ullet Model changes in Θ_{max} as a two state Markov process

Resulting stochastic control problem

- Wind process: $\sum P_i^w(t) \sim \text{Markov process}$
- Temperature dynamics: $\dot{x}_i(t) = h_i P_i^w(t) P_i^n(t)$
- Non-renewable power $P_i^n(t) \ge 0$
- Stochastic comfort level $\Theta_{max}(t) \sim \text{Markov process }, \Theta_{max}(t) \in \{\Theta_{max}^1, \Theta_{max}^2\}$
- Temperature constraint: $x_i(t) \in [\Theta_{min}, \Theta_{max}^2], \forall i$
- Maximum cooling rate: $P_i^n(t) = M \text{ If } x_i(t) > \Theta_{max}(t)$
- Quadratic cost: $\lim_{T \to \infty} \frac{1}{T} \int_0^T [\sum_i P_i^n(t)]^2 dt$

HJB equation and optimal solution

• Cost to go function $V^{ij}(x,t) := \min_{P_i^n, P_i^w \in U} \mathbb{E}\left[\int_t^T (P_1^n + P_2^n)^2 |w(t) = i, th(t) = j, x(t) = x\right]$

$$\begin{aligned} \textbf{+JB equation} \quad & \underset{P_1^n,P_2^n \in U}{\min} \{ (P_1^n + P_2^n)^2 - \frac{\partial V^{ij}}{\partial x_1} P_1^n - \frac{\partial V^{ij}}{\partial x_2} P_2^n \} - \underset{P_1^w,P_2^w \in U}{\max} \{ \frac{\partial V^{ij}}{\partial x_1} P_1^w + \frac{\partial V^{ij}}{\partial x_2} P_2^w \} \chi_{\{i=1\}} \\ & = q_{ii'}(V^{ij} - V^{i'j}) + q_{jj'}(V^{ij} - V^{ij'}) - h_i(V_{x1}^{ij} + V_{x2}^{ij}) - \dot{V}^{ij} \end{aligned}$$

• Optimal Solution $(\mathring{P}_1^w(\vec{x},j),\mathring{P}_2^w(\vec{x},j)) = \begin{cases} (\mathbf{W},0) & \text{if } \frac{\partial V_{1j}}{\partial x_1} > \frac{\partial V_{1j}}{\partial x_2} \\ (0,\mathbf{W}) & \text{if } \frac{\partial V_{1j}}{\partial x_1} < \frac{\partial V_{1j}}{\partial x_2} \end{cases}$

$$(\mathring{P}_{1}^{n}(\vec{x}, i, j), \mathring{P}_{2}^{n}(\vec{x}, i, j)) = \begin{cases} \left(\frac{1}{2} \frac{\partial V_{ij}^{*}}{\partial x_{1}}(\vec{x}), 0\right) & \text{if } \frac{\partial V_{ij}^{*}}{\partial x_{1}} > \frac{\partial V_{ij}^{*}}{\partial x_{2}} \\ \left(0, \frac{1}{2} \frac{\partial V_{ij}^{*}}{\partial x_{2}}(\vec{x})\right) & \text{if } \frac{\partial V_{ij}^{*}}{\partial x_{1}} < \frac{\partial V_{ij}^{*}}{\partial x_{2}} \\ \left(\frac{1}{2} \frac{\partial V_{ij}^{*}}{\partial x_{1}}(\vec{x}), \frac{1}{2} \frac{\partial V_{ij}^{*}}{\partial x_{2}}(\vec{x})\right) & \text{if } \frac{\partial V_{ij}^{*}}{\partial x_{1}} = \frac{\partial V_{ij}^{*}}{\partial x_{2}} \end{cases}$$

• Optimal power allocation depends upon $\frac{\partial V_{ij}^*}{\partial x_1} \lessgtr \frac{\partial V_{ij}^*}{\partial x_2}$ when $x_1 \le x_2$

Local concavity in stochastic Θ_{\max} variational model

Optimal solution for stochastic Θ_{\max} variation model

Nature of the optimal solution

Temperature load 1

Vector field of temperature changes

- De-synchronization at high temperatures
- Re-synchronization at low temperatures

De-synchronization/Re-synchronization in solution

It is optimal to separate at high temperatures

 Hedges against the future eventuality that the thermostats are switched low

Issues in designing an architecture and solution for demand response

Need for demand side and supply side information exchange

- Loads need to know when to invoke demand response
- Supply side needs to know how much demand response will provide
- Need for two-way communication between demand side and supply side
 - Volume of data
 - Delay requirements of data

Need to respect privacy

How to control demand without intrusive sensing of temperatures of homes?

Need to reduce communication requirements

How to minimize communication requirements for measurements and actuation signals?

Challenges

Goals

- Maximize utilization of renewable energy
- Minimize variability of non-renewable power required
- Respect comfort constraints of homes

Architecture

- How to achieve demand pooling?
- Respect privacy: No intrusive sensing
- Minimize communication requirements
 - » Volume and latency of data

Solution

- "Optimal" efficient in some sense
- Computationally tractable for large number of homes

Architecture of the solution

Load aggregator: Price based aggregation

Load aggregator: Price based aggregation

Load aggregator: Microgrid with renewable energy supply

Thermostatic control with set points Z_i

Thermostatic set-point based control policy

Problem: Synchronization of demand response

- Optimal solution: All users behave alike
- Loads synchronize and move in lock-step
- Robustness problem: Suppose users change comfort level settings at same time
 - Super bowl Sundays @ game time
- Demand suddenly rises, causing large peak in nonrenewable power required
 - Model cost as $\lim_{T \to \infty} \frac{1}{T} \int_0^T (P^n(t))^2 dt$

Reduce peak-to-average ratio of nonrenewable power

 Low variability in non-renewable power consumption is desired

- Lowers operating reserve requirements
- Impose a quadratic cost on non-renewable power usage $\int P_{\text{non-renewable}}^2(t)dt$

Staggered set-points

- De-synchronize load behaviors
- Choose different set-points $(Z_1, Z_2, ..., Z_N)$ for different loads

Discomfort: Maximum cooling when comfort range is violated

ullet Model changes in $\Theta_{\max}(t)$ as a two state Markov process

Stochastic optimization problem for $\{Z_1, Z_2, ..., Z_N\}$

- Stochastic wind process: $P^{w}(t)$
- ◆ Temperature dynamics: $\dot{x}_i(t) = h P_i(t)$

$$P_i(t) = P_i^w(t) + P_i^n(t)$$

- Comfort specification: $\dot{x}_i(t) \in [0, \Theta_{\text{max}}(t)]$
- Robustness model: Stochastic process $\Theta_{\max}(t)$
- Set-point control: $P_i^n(t) = \begin{cases} h \text{ if } x_i(t) = Min(Z_i, \Theta_{\max}(t)) \\ 0 \text{ otherwise} \end{cases}$

Variation

Discomfort

Evaluating the cost: Stochastic coupling

- Evaluation of cost $\lim_{T \to \infty} \frac{1}{T} \int_0^T (\sum_{i=1}^N P_i^n)^2 dx$ is difficult
- Needs N-dimensional joint probability distribution of temperature states $(x_1, x_2, ..., x_N)$
- Can use stochastic coupling to solve this

The marginal probability distribution of a load

$$\begin{split} \frac{d\mathbf{p}^z(x)}{dx} &= \begin{bmatrix} -\frac{q_0+r_0}{k(x)} & \frac{r_1}{k(x)} & \frac{q_1}{k(x)} & 0 \\ \frac{q_0}{h} & -\frac{q_0+r_1}{h} & 0 & \frac{q_1}{h} \\ -\frac{q_0}{c} & 0 & \frac{q_1+r_1}{c} & -\frac{r_1}{c} \\ 0 & -\frac{q_0}{c} & -\frac{r_0}{r_0} & \frac{q_1+r_1}{c} \end{bmatrix} \mathbf{p}^z(x). \end{split}$$
 where $k(x) = \begin{cases} h & x < \Theta_1 \\ -c & x > \Theta_1 \end{cases}$. The boundary conditions are
$$\begin{bmatrix} h/q_1 & h/q_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0/q_1 & c/q_1 \end{bmatrix} \mathbf{p}^z(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \delta_0,$$

$$\begin{bmatrix} h/q_1 & h/q_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0/q_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ -\frac{c}{q_0} & 0 & 0 & 0 & \frac{c}{q_0} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{r_0}{q_0} & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}^z(\Theta_1-) \\ \mathbf{p}^z(\Theta_1+) \end{bmatrix} = \begin{bmatrix} \delta_{\Theta_1}^{\Sigma} \\ \delta_{\Theta_1}^{\Sigma} \\ \delta_{\Theta_1}^{\Sigma} \end{bmatrix},$$

$$\begin{bmatrix} \frac{c}{r_1} & 0 & 0 & 0 \\ 0 & \frac{h}{q_0+r_1} & 0 & 0 \\ 0 & 0 & 0 & \frac{c}{q_0} \end{bmatrix} \mathbf{p}^z(z) = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \delta_z^z,$$

$$\int_0^z (\mathbf{1}^T \mathbf{p}^z(x)) dx + \delta_0^z + \delta_z^z + \delta_{\Theta_1}^z = 1,$$

$$\int_0^z p_{01}^z(x) dx + \delta_z^z = \frac{q_1 r_0}{(q_1+q_0)(r_1+r_0)}.$$

Marginal probability distribution can be determined through solution of linear system equations

The optimization problem for a finite number of loads

Minimize

$$C^{N}(Z_{1},...,Z_{N}) = \sum (\text{Power level})^{2} \times \text{Prob}(\text{Power level}) + \gamma_{N} \sum \text{Expected Discomfort}$$

Subject to

$$0 \le Z_1 \le Z_2 \dots \le Z_N \le \Theta_2$$

- Difficult
 - High dimensional when N is large
 - Complex
 - Need to solve different problems for different N's

Continuum limit as $N \to \infty$.

Solution

- Study asymptotic limit as $N \to \infty$.
- Consider Set of loads = [0,1]
- Can solve using analytical methods
 - » Pontryagin Minimum Principle
- Solution is explicit!
- Also asymptotic solution is also nearly optimal even for small N!
- Essentially this solves the problem for all N's

Difficulty with Euler Lagrange method

- \bullet Calculus of variation problem $J[u] = \int_0^{\Theta_2} F(u,u',z) dz$ Euler-Lagrange solution
 - $u_{EL}(z) = \frac{\gamma \Phi'(z) + 2c(c+h)D_2(z)}{2(h^2D_1(z) + c^2D_2(z))}$

 This is not an increasing function, and does not satisfy boundary condition

Optimal solution via Pontryagin's minimum principle

Use Pontryagin's Minimum principle

Control v(z)

State (non-decreasing):
$$\frac{d}{dz}u(z) = f(u, v, z) = v^2(z) \ge 0$$

Hamiltonian:
$$H = (u(z) - u_{EL}(z))^2 w(z) + \lambda(z)v^2(z)$$

Necessary conditions:

$$\frac{d}{dz}\lambda(z) = -2(u(z) - u_{EL}(z))w(z)$$

$$v(t) = \arg\min_{v \ge 0} \left[(u(z) - u_{EL}(z))^2 w(z) + \lambda(z)v^2(z) \right]$$

Optimal solution via Pontryagin's minimum principle

This gives the optimal staggering of set points

Solving for finite *N*: Approximation to continuum limit

• We can generate $\{Z_i\}_1^N$ according to continuum limit distribution, to approximate finite optimal distribution

Some simulation results

◆ The random generation method works reasonably well, even when N is small

Some simulation results - 2

$$Load factor = \frac{Average power}{Peak power}$$

 Optimal policy has higher load factor than other naive policies

Concluding remarks

- Design and analysis of an architecture and a simple set-point policy
 - Is architecturally simple to implement
 - De-synchronizes the loads to lower non-renewable peakto average
 - Alleviates privacy concerns
 - Simple to analyze, low communication requirement, decentralized control
- Many extensions are feasible
 - Response to comfort variations
 - Availability of wind power
 - Generalize wind model, temperature dynamics, etc.

Thank you